CHAPTER 13

Profit Maximization
in Mechanism Design

Jason D. Hartline and Anna R. Karlin

Abstract

We give an introduction to the design of mechanisms for profit maximization with a focus on single-
parameter settings.

13.1 Introduction

In previous chapters, we have studied the design of truthful mechanisms that implement
social choice functions, such as social welfare maximization. Another fundamental
objective, and the focus of this chapter, is the design of mechanisms in which the goal
of the mechanism designer is profit maximization. In economics, this topic is referred
to as optimal mechanism design.

Our focus will be on the design of profit-maximizing auctions in settings in which
an auctioneer is selling (respectively, buying) a set of goods/services. Formally, there
are n agents, each of whom desires some particular service. We assume that agents
are single-parameter; i.e., agent i’s valuation for receiving service is v; and their
valuation for no service is normalized to zero. A mechanism takes as input sealed
bids from the agents, where agent i’s bid b; represents his valuation v;, and computes
an outcome consisting of an allocation x = (xy, ..., x,) and prices p = (p1, .. ., Pn)-
Setting x; = 1 represents agent i being allocated service whereas x; = 0 is for no
service, and p; is the amount agent i is required to pay the auctioneer. We assume that
agents have quasi-linear utility expressed by u; = v;x; — p;. Thus, an agent’s goal in
choosing his bid is to maximize the difference between his valuation and his payment.

To make this setting quite general, we assume that there is an inherent cost c¢(x) in
producing the outcome X, which must be paid by the mechanism. Our goal is to design
the mechanism, i.e., the mapping from bid vectors to price/allocation vectors so that
the auctioneer’s profit, defined as

Profit = Zi pi — c(X),
is maximized, and the mechanism is truthful.
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Many interesting auction design problems are captured within this single-parameter
framework. In what follows, we describe a number of these problems, and show that,
for most of them, the VCG mechanism (Chapter 9), which maximizes social welfare,
is a poor mechanism to use when the goal is profit maximization.

Example 13.1 (single-item auction) We can use the cost function c¢(x) to cap-
ture the constraint that at most one item can be allocated, by setting c¢(x) = 0 if
> ; X; < 1 and oo otherwise. The profit of the Vickrey auction (Chapter 9) is the
second highest of the valuations in the vector v. If prior information about agents’
valuations is available, then there are auctions with higher profit than the Vickrey
auction.

Example 13.2 (digital goods auctions) In a digital goods auction, an auction-
eer is selling multiple units of an item, such as a downloadable audio file or a
pay-per-view television broadcast, to consumers each interested in exactly one
unit. Since the marginal cost of duplicating a digital good is negligible and digital
goods are freely disposable, we can assume that the auctioneer has an unlimited
supply of units for sale. Thus, for digital goods auctions c(x) = 0 for all x.

The profit of the VCG mechanism for digital goods auctions is zero. Indeed,
since the items are available in unlimited supply, no bidder places any externality
on any other bidder.

Example 13.3 (single-minded combinatorial auction, known bundles) In a
combinatorial auction with single-minded agents, each agent has exactly one bun-
dle of items that he is interested in obtaining. Agent i ’s value for his desired bundle,
S;,1s v;. We use the cost function c(x) to capture the constraint that each item can be
allocated to at most one bidder. Thus, c¢(x) = 0if Vi, j, S; N S; # 0 — x;ix; =0,
and c(x) = oo otherwise.

Example 13.4 (multicast auctions) Consider a network with users residing at
the nodes in the network, each with a valuation for receiving a broadcast that
originates at a particular node, called the root. There are costs associated with
transmitting data across each of the links in the network — the cost of transmitting
across link e is c(e). Our problem is then to design an auction that chooses a
multicast tree, the set of users to receive the broadcast, and the prices to charge
them. In this setting, c(x) is the total cost of connecting all of the agents with
x; = 1 to the root (i.e., the minimum Steiner tree cost).

In most nondegenerate instances of this problem the VCG mechanism will run
a deficit. One such example is the public project setting described in Chapter 9,
Section 3.5 which can be mapped to a network with a single link of cost C, where
one endpoint is the root and all the users are at the other endpoint.

All of the other examples detailed in Chapter 9, Section 3.5, i.e., reverse auctions,
bilateral trade, multiunit auctions, and buying a path in a network, as well as many
other problems can be modeled in this single-parameter agent framework.



INTRODUCTION 333

13.1.1 Organization

Our discussion of optimal mechanism design will be divided up into three categories,
depending on our assumptions about the agents’ private values. On one hand, as is
typical in economics, we can assume that agents’ private values are drawn from a
known prior distribution, the so-called Bayesian approach. Given knowledge of these
prior distributions, the Bayesian optimal mechanism is the one that achieves the largest
expected profit for these agents, where the expectation is taken over the randomness
in the agents’ valuations. In Section 13.2, we present the seminal result of Myerson,
showing how to design the optimal, i.e., profit-maximizing, Bayesian auction given the
prior distribution from which bidders’ valuations are drawn.

On the other hand, in many cases, determining these prior distributions in advance
may not be convenient, reasonable, or even possible. It is particularly difficult to collect
priors in small markets, where the process of collecting information can seriously
impact both the incentives of the agents and the performance of the mechanism. Thus,
it is of great interest to understand to what extent we are able to to design mechanisms
for profit maximization even when we know very little about bidders’ valuations. This
approach leads us to the more traditional computer science approach of “worst-case
analysis.” While worst-case analysis could lead to results that are overly pessimistic,
we shall see that in many cases we are able to obtain worst-case guarantees that
are comparable to the optimal average-case guarantees for valuations from known
distributions.

We begin our exploration of worst-case analysis in Section 13.3, where we survey
techniques for approximating the optimal mechanism. We give natural mechanisms
that approach optimality on large markets and a general formula for their performance
as a function of the market size for small markets.

To obtain a theory of optimal mechanisms design without assumptions on the size of
the market, we adopt a framework of relative optimality. This is motivated by two key
observations. First, as we will explain later, there is no truthful mechanism that is best
on every input. Second, in the worst case, all the agents’ private values could be zero
(or negligible) and thus no auction will be able to extract a high profit. In Section 13.4,
we describe techniques for designing auctions that always (in worst case) return a profit
that is within a small constant factor of some profit benchmark evaluated with respect
to the agents’ true private values.

Finally, in Section 13.5, we consider procurement settings where the auctioneer
is looking to buy a set of goods or services that satisfy certain constraints, e.g., a
path or a spanning tree in a graph. Specifically, we consider the problem of designing
procurement auctions to minimize the total cost of the auctioneer (i.e., maximize their
profit) relative to a natural benchmark.

We conclude the chapter with a discussion of directions for future research.

13.1.2 Preliminaries

In this section, we review basic properties of truthful mechanisms.
We will place two standard assumptions on our mechanisms. The first, that they
are individually rational, means that no agent has negative expected utility for taking
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part in the mechanism. The second condition we require is that of no positive transfers
which restricts the mechanism to not pay the agents when they do not win, i.e.,
xi=0— p;=0.

In general, we will allow our mechanisms to be randomized. In a randomized
mechanism, x; is the probability that agent i is allocated the good, and p; is agent i’s
expected payment. Since x; and p; are outputs of the mechanism, it will be useful to view
them as functions of the input bids as follows. We let x;(b), p;(b), and u;(b) represent
agent i’s probability of allocation, expected price, and expected utility, respectively.
Letb_; =(b,...,bi_1,?, biy1, ..., b,) represent the vector of bids excluding bid i.
Then with b_; fixed, we let x;(b;), p;(b;), and u;(b;) represent agent i ’s probability of
allocation, expected price, and expected utility, respectively, as a function of their own
bid. We further define the convenient notation x;(b;, b_;) = x;(b), p;(b;, b_;) = p:(b),
and Lli(bi, b,,') = M,(b)

Definition 13.5 A mechanism is truthful in expectation if and only if for all 7,
v;, b;, and b_;, agent i’s expected utility for bidding their valuation, v;, is at least
their expected utility for bidding any other value. In other words,

u;i(vi, b_;) > u;(b;, b_;).

For single-parameter agents, we restate the characterization of truthful mechanisms
which was proven in Chapter 9, Section 5.6.

Theorem 13.6 A mechanism is truthful in expectation if and only if, for any
agent i and any fixed choice of bids by the other agents b_;,

(i) x;(b;) is monotone nondecreasing.
(D) pi(bi) = bixi(bi) — [y x:(z) dz.

Given this theorem, we see that once an allocation rule x(-) is fixed, the pay-
ment rule p(-) is also fixed. Thus, in specifying a mechanism we need specify
only a monotone allocation rule and from it the truth-inducing payment rule can be
derived.

It is useful to specialize Theorem 13.6 to the case where the mechanism is determin-
istic. In this case, the monotonicity of x;(b;) implies that, for b_; fixed, there is some
threshold bid #; such that x;(b;) = 1 for all b; > t; and O for all t; < b;. Moreover the
second part of the theorem then implies that for any b; > t;, p;(b;) = b; — ff" dz =t.
We conclude the following.

Observation 13.1.1  Any deterministic truthful auction is specified by a set of
functions t;(b_;) which determine, for each bidder i and each set of bids b_;, an
offer price to bidder i such that bidder i wins and pays price t; if b; > t;, or loses
and pays nothing if b; < t;. (Ties can be broken arbitrarily.)
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13.2 Bayesian Optimal Mechanism Design

In this section we describe the conventional economics approach of Bayesian optimal
mechanism design where it is assumed that the valuations of the agents are drawn from a
known distribution. The mechanism we describe is known as the Myerson mechanism:
it is the truthful mechanism that maximizes the auctioneer’s expected profit, where the
expectation is taken over the randomness in the agents’ valuations.

Consider, for example, a single-item auction with two bidders whose valuations are
known to be drawn independently at random from the uniform distribution on [0, 1].
In Chapter 9, Section 6.3, it was shown that in this setting the expected revenue of both
the Vickrey (second-price) auction and of the first-price auction is 1/3. In fact, it was
observed that any auction that always allocates the item to the bidder with the higher
valuation achieves the same expected revenue.

Does this mean that 1/3 is the best we can do, in expectation, with bidders of this
type? The answer is no. Consider the following auction.

Definition 13.7 (Vickrey auction with reservation price r) The Vickrey auc-
tion with reservation price r, VA,, sells the item to the highest bidder bidding at
least r. The price the winning bidder pays is the maximum of the second highest
bid and r.

It is a straightforward probabilistic calculation to show that the expected profit of
the Vickrey auction with reservation price r = 1/2 is 5/12. Thus, it is possible to get
higher expected profit than the Vickrey auction by sometimes not allocating the item!
This raises the problem of identifying, among the class of all truthful auctions, the
auction that gives the optimal profit in expectation. The derivation in the next section
answers this question and shows that in fact for this scenario VA, is the optimal
auction.

13.2.1 Virtual Valuations, Virtual Surplus, and Expected Profit

We assume that the valuations of the agents, vy, ..., v,, are drawn independently at
random from known (but not necessarily identical) continuous probability distributions.
For simplicity, we assume that v; € [0, k] for all i. We denote by F; the distribution
function from which bidder i’s valuation, v;, is drawn (i.e., F;(z) = Pr[v; < z]) and
by f; its density function (i.e., fi(z) = %Fi(z)). Since the agents’ valuations are
independent, the joint distribution from which v is drawn is just the product distribution
F=F x---xF,.
We now define two key notions: virtual valuations and virtual surplus.

Definition 13.8 The virtual valuation of agent i with valuation v; is

1 — Fi(v;)

¢i(vi) = v; — o
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Definition 13.9  Given valuations, v;, and corresponding virtual valuations,
¢i(v;), the virtual surplus of allocation X is ), ¢; (v;)x; — c(X).

As the surplus of an allocation is ) _; v;x; — ¢(X), the virtual surplus of an allocation is
the surplus of the allocation with respect to agents whose valuations are replaced by
their virtual valuations, ¢;(v;).

We now show that any truthful mechanism has expected profit equal to its expected
virtual surplus. Thus, to maximize expected profit, the mechanism should choose an
allocation which maximizes virtual surplus. In so far as this allocation rule is monotone,
this gives the optimal truthful mechanism!

Theorem 13.10  The expected profit of any truthful mechanism, M, is equal to
its expected virtual surplus, i.e., Ey\[ M(v)] = Ev[zi ¢i (Vi)x; (V) — c(x(V))].

Thus, if the mechanism, on each bid vector b, chooses an allocation, x, which
maximizes ) _; ¢;(b;)x; — c(x), the auctioneer’s profit will be maximized. Notice that
if we employ a deterministic tie-breaking rule then the resulting mechanism will be
deterministic. Theorem 13.10 follows from Lemma 13.11 below, and the independence
of the agents’ valuations.

Lemma 13.11  Consider any truthful mechanism and fix the bids b_; of all
bidders except for bidder i. The expected payment of a bidder i satisfies:

Ey, [pi(b)] = Ey,[¢:(b)x;(D)] .

PROOF To simplify notation, we drop the subscript i and refer simply to the bid
b being randomly chosen from distribution F* with density function f.
By Theorem 13.6, we have

h h h b
Ey[p(D)] :/ pb) f(b)db :/ bx(b)f(b)db —f / x(2) f(b)dz db.
=0 b=0 b=0 Jz=0

Focusing on the second term and switching the order of integration, we have

h h h

bx(b) f(b)db — / x(z) f(b)dbdz.

z=0 b=z

Ey[p(b)] = /

b=0

h h
= / bx(b) f(b)db — / x(2)[1 = F(z)ldz.
=0 z=0

Now, we rename z to b and factor out x(b) f(b) to get

h h

E,[p(b)] = /b B bx(b) f(b)db — fb _Ox(b)[l — F(b)1db.
" 1 — F(b)
= b— ————= | x(b) f(b)db.
/b=0|: 70 }x( )f (b)

=Ey[¢(D)x(D)]. o
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13.2.2 Truthfulness of Virtual Surplus Maximization

Of course, it is not immediately clear that maximizing virtual surplus results in a
truthful mechanism. By Theorem 13.6, this depends on whether or not virtual surplus
maximization results in a monotone allocation rule. Recall that the VCG mechanism,
which maximizes the actual surplus, i.e., Y, v;x; — ¢(X), is truthful precisely because
surplus maximization results in a monotone allocation rule. Clearly then, virtual surplus
maximization gives an allocation that is monotone in agent valuations precisely when
virtual valuation functions are monotone in agent valuations. Indeed, it is easy to find
examples of the converse which show that nonmonotone virtual valuations result in a
nonmonotone allocation rule. Thus, we conclude the following lemma.

Lemma 13.12  Virtual surplus maximization is truthful if and only if, for all i,
¢;(v;) is monotone nondecreasing in v;.

A sufficient condition for monotone virtual valuations is implied by the monotone
hazard rate assumption. The hazard rate of a distribution is defined as f(z)/(1 — F(z)).
Clearly, if the hazard rate is monotone nondecreasing, then the virtual valuations are
monotone nondecreasing as well. There is a technical construction that extends these
results to the nonmonotone case, but we do not cover it here.

Definition 13.13 Let F be the prior distribution of agents’ valuations satisfying
the monotone hazard rate assumption. We denote by Myey(b) the Myerson mech-
anism: on input b, output x to maximize the virtual surplus (defined with respect
to the distribution F).

Thus, for single parameter problems, profit maximization in a Bayesian setting
reduces to virtual surplus maximization. This allows us to describe Myerson’s optimal
mechanism, Myeg(b), as follows:

(i) Given the bids b and F, compute “virtual bids”: b} = ¢;(b;).
(ii) Run VCG on the virtual bids b’ to get X’ and p’
(iii) Output x = x’ and p with p; = ¢, (p}).

13.2.3 Applications of Myerson’s Optimal Mechanism

The formulation of virtual valuations and the statement that the optimal mechanism is
the one that maximizes virtual surplus is not the end of the story. In many relevant cases
this formulation allows one to derive very simple descriptions of the optimal mecha-
nism. We now consider a couple of examples to obtain a more precise understanding
of Myeg(b) and illustrate this point.

Example 13.14 (single-item auction) In a single-item auction, the surplus
maximizing allocation gives the item to the bidder with the highest valuation,
unless the highest valuation is less than 0 in which case the auctioneer keeps the
item. Usually, we assume that all bidders’ valuations are at least zero, or they
would not want to participate in the auction, so the auctioneer never keeps the item.
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However, when we maximize virtual surplus, it may be the case that a bidder
has positive valuation but negative virtual valuation. Thus, for allocating a single
item, the optimal mechanism finds the bidder with the largest nonnegative virtual
valuation if there is one, and allocates to that bidder.

What about the payments? Suppose that there are only two bidders and we
break ties in favor of bidder 1. Then bidder 1 wins precisely when ¢(b;) >
max{¢,(b,), 0}. This is a deterministic allocation rule, and thus the payment that
a winning bidder 1 must make is the p; = inf{b : ¢1(b) > ¢2(b2) A ¢1(b) > 0}.
Suppose that F; = F, = F, which implies that ¢(z) = ¢»(z) = ¢(z). Then
this simplifies to p; = min(h,, ¢~1(0)). Similarly, bidder 2’s payment upon
winning is p, = min(b;, ¢~'(0)), thus we arrive at one of Myerson’s main
observations.

Theorem 13.15 The optimal single-item auction for bidders with valuations
drawn i.i.d. from distribution F is the Vickrey auction with reservation price
¢7l(0), i.e., VA¢—1(O).

For example, when F is uniform on [0, 1], we can plug the equations F(z) = z
and f(z) = 1 into the formula for the virtual valuation function (Definition 13.8) to
conclude that ¢(z) = 2z — 1. Thus, the virtual valuations are uniformly distributed on
[—1, 1]. We can easily solve for ¢ ~'(0) = 1/2. We conclude that the optimal auction
for two bidders with valuations uniform on [0, 1] is the Vickrey auction with reservation
price 1/2, VA, ;.

Example 13.16 (Digital goods auction) Recall that in a digital goods auction,
we have c(x) = 0 for all x. Thus, to maximize virtual surplus, we allocate to each
bidder such that ¢;(b;) > 0. As in the previous example, the payment a winning
bidder must make is his minimum winning bid, i.e., inf{b : ¢;(b) > 0}, which is
identically ¢, '(0).

Notice that with n bidders whose valuations are drawn independently from
the same distribution function F, the reserve price for each bidder is ¢~!(0), the
solution to b — 1—2()1;) = 0. It is easy to check that this is precisely the optimal
sale price for the distribution F': the take-it-or-leave-it price we would offer each
bidder to maximize our expected profit.

Definition 13.17 (optimal sale price) The optimal sale price for distribution F
is opt(F) = argmax_ z(1 — F(2)).

Summarizing, we obtain:

Theorem 13.18 The optimal digital goods auction for n bidders with valuations
drawn i.i.d. from distribution F is to offer each bidder the price opt(F) = ¢~'(0).
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13.3 Prior-Free Approximations to the Optimal Mechanism

In the previous section, we saw how to design the optimal mechanism when agents’
valuations were drawn from known distributions. The assumption that the valuations
are drawn from a known prior distribution makes sense in very large markets. In
fact, as we shall see shortly, in large enough markets, a good approximation to the
prior distribution can be learned on-the-fly and thus there are prior-free mechanisms
that obtain nearly the optimal profit. We discuss these results in the first part of this
section.

In small markets, on the other hand, incentives issues in learning an approximation
of the prior distribution result in loss of performance and fundamental mechanism
design challenges. Thus, new techniques are required in these settings. We develop an
approach based on random sampling and analyze its performance in a way that makes
explicit the connection between the size of the market and a mechanism’s performance.

13.3.1 Empirical Distributions

The central observation that enables effective profit maximization without priors is
Observation 13.1.1, which says that a truthful mechanism can use the reported bids of
all the other agents in order to make a pricing decision for a particular agent.

Definition 13.19 (empirical distribution) For a vector of bids b=
by, ..., by), the empirical distribution for these bids is Fy satisfying for
X ~ Fp, Pr[X > z] = n,/n, where n, is the number of bids in b above value z.

We now present a variant on Myerson’s mechanism that can be used without any
prior knowledge. As we shall see below, this mechanism has interesting interpretations
in several contexts.

Definition 13.20 (empirical Myerson mechanism) The empirical Myerson
mechanism, EM on input b, for each i, simulates Mye Fh,.(b) to obtain out-
come x* and payments p®. It then produces outcome x and p with x; = x\" and

pi = P,@-

The outcome and payment for agent i in the empirical Myerson mechanism is
based on the simulation of Mye F (b), and since agent i cannot manipulate Fy_,, this
mechanism is truthful.

There are two issues that we need to address in order to understand the performance
of the EM mechanism. First, we need to see if the outcomes it produces are feasible. The
issue is that the allocation to different agents, say i and j, is determined from different
information (b_; versus b_;). As we shall see, this inconsistency will sometimes
produce allocations, X, that are not feasible (i.e., c(x) = 00). Second, in those situations
where it does produce feasible allocations, we need to understand how effective the
mechanism is at profit maximization. The hope is that, in large markets, Fy,_, should
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be close to F}, and hence the law of large numbers should imply good performance.
Again, we will see that this does not hold in general.

We begin by considering the application of EM to digital goods auctions, where
there is no feasibility issue.

Definition 13.21 (deterministic optimal price auction) We define the deter-
ministic optimal price auction (DOP) as EM applied to the digital goods auction
problem.

In the previous section, we saw that if each agent’s valuation is drawn from the
same distribution F', Myerson’s mechanism offers price ¢ ~!(0) = opt(F) to each bid-
der. The deterministic optimal price auction, on the other hand, offers agent i price
opt(Fy_,). Using the short-hand notation opt(b) = opt(Fy), Observation 13.1.1 allows
us to express DOP quite simply as the auction defined by #;(b_;) = opt(b_;). Since
b_; is different for each agent, in general the prices offered the agents are different.
Nonetheless, the law of large numbers implies the following result (which is a corollary
of Theorem 13.30 proved in the next section).

Theorem 13.22  For the digital goods setting and n bids b distributed i.i.d. from
distribution F with bounded support, the profit of DOP approaches the profit of
Myerson in the limit as n increases.

Unfortunately, the assumption that the input comes from an unknown, but i.i.d. dis-
tribution is crucially important to this result as the following example shows.

Example 13.23  With 10 bids at $10, and 90 bids at $1, consider the prices
t;(b_y) and ¢;(b_;o) that DOP offers bidders bidding $1 and $10 respectively:

e b_;is 89 bids at $1 and 10 bids at $10, so opt(b_;) = $10, and
e b_jis 90 bids at $1 and 9 bids at $10, so opt(b_j) = $1.

Thus, bids at $10 are accepted, but offered price $1, while bids at $1 are rejected.
The total profit is $10 whereas the optimal is $100. This example can be made
arbitrarily bad.

What happened in this example is the result of the inconsistency between the
distribution Fy,_, assumed when choosing a price for agent i, and the distribution Fy,_,
assumed when choosing a price for agent j. Had we just run Mye F, Of Mye R, On all
bids, all would have been well. Indeed, in this example, we would have chosen either
price $1 for everyone or price $10 for everyone. Both prices would have been fine.

This problem is not just one with DOP, but with any symmetric deterministic digital
goods auction.! Indeed, the problem inherent in this example can be generalized to
prove the following theorem.

" An auction is symmetric if the outcome and prices are not a function of the order of the input bids, but rather
just the set of bids.
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Theorem 13.24  There do not exist constants 8 and y and a symmetric deter-
ministic truthful auction, A, with profit at least OPT /8 — hy on all bid vectors
b with b; € [1, h].

The inconsistency of EM can be more serious than just low profit on some, perhaps
unlikely, inputs; if some outcomes are infeasible (i.e., c(x) = oo for some x) then EM
may result in infeasible outcomes! In the next section we see how these consistency
issues can be partially addressed through the use of random sampling.

13.3.2 Random Sampling

Random sampling plays an important role in the design of economic mechanisms. For
example, during elections, polls that predict each candidate’s ranking affect the results
of the elections; and in many settings, market analysis and user studies using a (small)
random sample of the population can lead to good decisions in product development
and pricing. In this section, we consider a natural extension of the empirical Myerson
mechanism that uses random sampling to address the consistency issues raised in the
preceding section.

Definition 13.25 (Random sampling empirical myerson) The random sam-
pling empirical Myerson mechanism (RSEM) works as follows:
(i) Solicit bids b = (by, ..., by).
(i) Partition the bids into two sets b’ and b” uniformly at random.
(iii) Compute empirical distributions for each set F' = Fyy and F" = Fyy.
(iv) Run Mye,(b’) and Mye.(b").

For digital goods auctions, we can replace Steps iii and iv by their more natural
interpretations (facilitated by the short-hand notation opt(b) = opt(Fp)):

(iii)> Compute the optimal sale prices p’ = opt(b’) and p” = opt(b”).
(iv)’ Offer price p’ to bidders in b” and price p” to bidders in b/'.

We refer to the digital goods variant of the random sampling empirical Myerson
mechanism as the random sampling optimal price auction (RSOP). The randomization
in RSOP allows it to bypass the deterministic impossibility for worst case settings
leading to the following theorem. (Again, this is as a corollary of Theorem 13.30
which is proven in the next section.)

Theorem 13.26 For b with b; € [1, h], the expected revenue of RSOP ap-
proaches that of the optimal single price sale as the number of bidders grows.

Similar results do not necessarily hold for more general settings. It is easy to imag-
ine situations where RSEM also gives infeasible outcomes as the following example
illustrates.
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Example 13.27 Consider the setting where we are selling a digital good in one
of two markets, for convenience, bidders 1, ..., i are in market A and bidders
i +1,...,n are in market B. Due, perhaps, to government regulations, it is not
legal to sell the good to bidders in both markets simultaneously. Thus, feasible
solutions will have winners either only from market A or only from market B.
It is easy to construct settings where RSEM will sell to one market in b’ and the
other in b”. The combined outcome, however, is not feasible.

The biggest open problem in prior-free mechanism design is to understand how to
approximate the optimal mechanism in more general settings.

13.3.3 Convergence Rates

As we have discussed above, the law of large numbers implies that the profit of the
random sampling auction, say in the case of digital goods, is asymptotically optimal
as the number of bidders grows. In this section, we study the rate at which the auction
approaches optimal performance. The theorem we prove will enable us to obtain a
precise relationship between the complexity of the class of outcomes considered by
RSOP and its convergence rate. The results in this section will also give us a framework
for evaluating the performance of random sampling-based mechanisms in very general
contexts.

We make our discussion concrete, using the example of the digital goods auction
problem. Recall that RSOP uses a subroutine that computes the optimal sale price for
the bids in each partition of the bidders. Suppose that we allowed the auctioneer the
ability to artificially restrict prices to be in some set Q. For example, the auctioneer
might only sell at integer prices, in which case Q would be the set of integers. The
auctioneer could further limit the set of possible prices, for example, by having Q be
powers of 2. We will see that different choices of Q will give us different bounds on
the convergence rate.

Given Q, we define RSOPg as the random sampling auction that computes the
optimal price from Q on each partition and offers it to bidders in the opposite partition.
We make use of the following notation. Let g(b;) be the payment made by bidder i
when offered g € Q. Thatis, g(b;) = q if b; > g and q(b;) = 0 otherwise. Let g(b) =
> _; q(b;). Finally, define opty(b) = argmax, .o q(b) as the g that gives the optimal
profit for b, and OPTg(b) to be this optimal profit, i.e., OPTg(b) = max,cg q(b).

The bounds we give in this section show the rate at which the profit of RSOP4(b)
approaches OPTg(b) with some measure of the size of the market. The measure we
use is OPTy itself, as this gives us the most general and precise result. Thus, these
results show the degree to which RSOPg approximates OPTg as OPTg grows large in
comparison to %, an upper bound on the payment of any agent, and the complexity of

Q.

Definition 13.28 Given partitions b’ and b”, price ¢ in Q is €-good if

lg(b’) — g(b")| < € OPTq(b)
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Lemma 13.29  For b and h satisfying q(b;) < h, for all i, if bids b are ran-

domly partitioned into b' and " then q is not €-good with probability at most
ZeerOPTQ(b)/Zh.

The proof of this lemma follows from McDiarmid’s inequality, see Exercise 13.5.
The following is the main theorem of this section. A natural interpretation of % is an
upper bound on the highest valuation, i.e., & = max; v;.

Theorem 13.30 For Q, b, and h satisfying q(b;) < h, for all g and i, and
OPTo(b) > & In (22, with probability 1 — § the profit of RSOPq is at least
(1 — €) OPTg(b).

PROOF Assume that OPTg(b) > i—i’ ln(%gl). For random partitioning of b into
b" and b”, Lemma 13.29 implies that the probability g € Q is not §-good is at
most §/|Q|. Using a union bound over all ¢ € Q, we have that all g € Q are
5-good with probability 1 — 4.

Let ¢" = optg(b'), ¢” = opty(b”), and g* = opty(b). By definition, g'(b") >
g*(b’) and likewise ¢”(b") > g*(b"). Thus, ¢'(b") + ¢”(b") > g*(b) = OPTy(b).
If all g are 5-good, certainly ¢’ and ¢" are; therefore, ¢'(b”) > q'(b") — 5 OPTg(b)
and ¢”(b") > q"(b") — 5 OPTg(b). Thus, we conclude that our auction profit,
which is ¢'(b") 4+ ¢”(b’) is at least (1 — €) OPT o(b) with probability 1 — § which
gives the theorem. O

Notice that this theorem holds for all € and §. In particular, it shows how big
the optimal profit must be before we can guarantee a certain approximation fac-
tor. Of course, in the limit as the optimal profit goes to infinity, our approxima-
tion factor approaches one. We refer to the lower bound required of optimal profit,
OPTg, in the statement of the theorem as the convergence rate. Indeed, if the
agents’ valuations are between 1 and %, the lower bound on the optimal profit can
be translated into a lower bound on the size of the market needed to guarantee the
approximation.

Let us now consider a few applications of the theorem: Suppose that @ = {1, ..., h}.
Then |Q] = h and the convergence rate to a (1 — €)-approximation with probability
1 — 68 is O(he 2log(2h/8)). If instead Q is powers of 2 on the interval [1, k], then
|Q| = log h and the convergence rate for constant € and § is O(h loglog h).

It is worth noting that the particular bids b that are input to any particular run of
RSOP¢ may further restrict the set of possible prices in Q that can be selected, say to
some subset Q'. We can apply Theorem 13.30 retrospectively to input b to bound the
performance of RSOPg in terms of |Q". For example, in the original RSOP auction
we consider all real numbers as prices; yet, opt(b) is always one of the bids. Thus,
using @' = {by, ..., b,} and noting that ]Q’ = n, tells us that the convergence rate of
our original RSOP digital good auction is O(he 2 1n(2n/8)). Even better bounds are
possible using a notion called y-covers (Exercise 13.6).
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Corollary 13.31 For Q, Q', b, and h satisfying q(b;) < h for all q and i,
opt(b’) € Q' for all subsets b’ of b, and OPTg(b) > 2—’21 ln(@); with probability
1 — 8 the profit of RSOPg is at least (1 — €) OPTg(b).

Lemma 13.29 and Theorem 13.30 are quite general and can be applied, as written, to
a wide variety of unlimited supply auction problems with rich structure on the class of
allowable offers, Q. Two examples are attribute auctions and combinatorial auctions.

13.4 Prior-Free Optimal Mechanism Design

In the previous sections, anumber of results on approximating the optimal mechanism in
worst-case settings were presented. Unfortunately, these results remain limited in their
applicability. For example, what if OPTg(b) is too small, as might happen if the size
of the market (i.e., the number of bidders) is too small? In such cases, Theorem 13.30
may give us no guarantee. Thus, a natural question to ask is: what is the best truthful
mechanism? Can we design a truthful mechanism for which we can prove nontrivial
performance guarantees under any market conditions?

The first observation that must be made is that there is no such thing as an absolute
“best” truthful auction. To gain some intuition for this statement, recall that in any
truthful auction, the offer price #; to bidder i is a function of all other bids b_;, but
not of b;. Thus, given any particular auction, which is forced to fix the offer price ¢,
independently of b;, (and hence always performs suboptimally for most values of b;),
there is always some input on which a different truthful auction performs better (see
Exercise 13.8).

Given that there is no absolute best truthful mechanism on all inputs, we are left
with the question of how we can arrive at a rigorous theoretical framework in which
we can compare auctions and determine one to be better. The key to resolving this
issue is in moving from absolute optimality to relative optimality. Indeed, whenever
there is an information theoretic obstacle or computational intractability preventing
an absolute optimal solution to a problem we can try to approximate. For example,
in the design of online algorithms the objective is to find an online algorithm that
performs comparably to an optimal offline algorithm. The notable analogy here is
between the game theoretic constraint that a mechanism does not know the true bid
values in advance and must solicit them in a truth-inducing manner, and the online
constraint that an online algorithm does not have knowledge of the future.

13.4.1 Competitive Framework

The general approach will be to try to design an auction with profit that is always (in
worst case) within a small constant factor of some profit benchmark.

Definition 13.32 A profit benchmark is a function G : R” — R which maps a
vector of valuations to a target profit.
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The following definition captures the intuition that an auction is good if it is always
close to a reasonable profit benchmark.

Definition 13.33 The competitive ratio of auction A (defined with respect to an

implicit profit benchmark G) is 8 = sup, i((:))

Given a profit benchmark G the task of an auction designer is to design an auction
that achieves the minimum possible competitive ratio. This auction is the optimal
competitive auction for G.

13.4.2 A Competitive Digital Goods Auctions

In this section, we will see that the RSOP auction that was defined in Section 13.3.2 is
in fact a competitive digital goods auction. To make this statement precise, we first need
to define the profit benchmark we will be attempting to compete with. In the analysis of
online algorithms it is not always best to gauge the performance of an online algorithm
by comparing it to an unconstrained optimal offline algorithm. Similarly, in the analysis
of truthful auctions, it sometimes makes sense to compare an auction’s profit to a profit
benchmark that is not necessarily the profit of the optimal algorithm that is given the
bidders’ true valuations in advance.

For digital goods auctions, natural profit benchmarks, such as (a) the maximum profit
achievable with fully discriminating prices (where each bidder pays their valuation) or
(b) the maximum profit achievable with a single price, are provably too strong in the
sense that no truthful auction can be constant competitive with these benchmarks.

Thus, the profit benchmark we will use is the following.

Definition 13.34 (F®) The optimal single priced profit with at least two win-
ners is

FO(v) = max ivg),
i>2
where v(; is the ith largest valuation.

Theorem 13.24 in Section 13.3.1 can be extended to this setting to show:

Corollary 13.35 No symmetric deterministic truthful auction has constant com-
petitive ratio relative to the profit benchmark F®.

Thus, we turn to randomized auctions where we find the following theorem.

Theorem 13.36  RSOP is 15-competitive with F.

We will not prove Theorem 13.36 here as it is primarily a technical probabilistic
analysis. We do note, however, that 15 is likely to be a loose upper bound. On the

other hand, it is easy to see that RSOP cannot have a competitive ratio better than 4, by
considering the bid vector b = ($1, $2). With probability 1/2 both bids end up in the
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same part and the RSOP profit is 0. Otherwise, with probability 1/2 one bid is in each
part. Without loss of generality, b’ = {$1} and b” = {$2}, then p’ = $1 and p” = $2.
Thus, the $1-bid is rejected (because she cannot pay $2) and the $2-bid is offered a
price of $1 which she accepts. The RSOP profit in this case is $1. The expected profit
of RSOP is therefore $0.50 while F®(b) = $2, which shows that RSOP is at best
4-competitive. It is conjectured that this two bid input is in fact the worst case and that
RSOP has a competitive ratio of 4.

13.4.3 Lower Bounds

Now that we have seen that there exists an auction that has constant competitive ratio
to F®, it is interesting to ask: what is the optimal auction in terms of worst case
competitive ratio to F»? What is the competitive ratio of this optimal auction? In this
section, we approach this question from the other side, by looking for lower bounds
on the competitive ratio. Specifically, we discuss a proof that shows that no auction is
better than 2.42-competitive.

Theorem 13.37 No auction has competitive ratio less than 2.42.

The proof of this theorem involves a fairly complicated analysis of the expected value of
F@(b) when b is generated from a particular probability distribution. We will instead
prove a simpler result which highlights the main ideas of the theorem.

Lemma 13.38 No 2-bidder auction has competitive ratio less than 2.

PROOF The proof follows a simple structure that is useful for proving lower
bounds for this type of problem. First, we consider bids drawn from a particular
distribution. Second, we argue that for any auction A, E [ A(b)] < E, [.7-" (2)(b)] /2.
This implies that there exists a bid vector b* such that A(b*) < F?(b*)/2.

We choose a distribution to make the analysis of Ep[.4(b)] simple. This is
important because we have to analyze it for all auctions .A. The idea is to choose the
distribution for b so that all auctions obtain the same expected profit. Consider b
with b; satisfying Pr[b; > z] = 1/z. Note that whatever the price #; is that A offers
bidder i, the expected payment made by bidderi is #; x Pr[b; > ;] = 1. Thus, for
n = 2 bidders the expected profit of any truthful auction is Ep[A(b)] = n = 2.

We must now calculate Ep[F@(b)]. F®(b) = max;>, ib;, where b is
the ith highest bid value. In the case that n = 2, this simplifies to F®(b) =
2b@) = 2min(by, by). We recall that a nonnegative random variable X has
E[X] = [;° Pr[X > z]dz and calculate Pr[F@(b) > z].

Pry[FP(b) > z] = Prp[b; > 2/2 A by > 7/2]
= Pryp[b; > z/2]Pryp[by > z/2]
=4/7%
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Note that this equation is valid only for z > 2. Of course for z <2,
Pr[F®(b) > z] = 1. Thus,

oo o0 4
Ep[FP(b)] = / Pr[F®b > z]dz =2+ / —dz = 4.
0 2 Z
For this distribution and any auction A, E,[A(b)] = 2 and E,[ F®(b)] = 4. Thus,
the inequality Ep[A(b)] < Eu[F@®(b)]/2 holds and there must exist some input
b* such that A(b*) < F@(b*)/2. O

For two bidders, this lower bound is tight. Indeed, it is trivial to check that for two
bidders, the Vickrey auction has competitive ratio 2.

The lower bound proof given above can be generalized by a more complicated
analysis to larger n. Such an analysis leads to bounds of 13/6 for n = 3 and eventually
to a bound of 2.42 for general n. It is conjectured that these bounds are tight. Indeed
they are tight for n < 3.

13.4.4 The Digital Goods Auction Decision Problem

In the next sections, we derive an auction with a competitive ratio of 4. We do this
by defining the notion of a decision problem for mechanism design and reducing the
problem of designing a good competitive auction to it.

Definition 13.39 The digital goods auction decision problem is: given n bidders,
n units of an item, and a target profit R, design a truthful mechanism that obtains
profit R if possible, i.e., if R < F(v). Here, F(v) = max;> i v, where v is the
ith largest valuation.

This digital goods auction decision problem is also known as the profit extraction
problem as its goal is to extract a profit R from a set of bidders. It turns out that this
problem is solved by a special case of a general cost-sharing mechanism.

Definition 13.40 (ProfitExtractg) The digital goods auction profit extractor
with target profit R sells to the largest group of k bidders that can equally share
R and charges each R/ k.

It is straightforward to show that ProfitExtracty is truthful and obtains a profit of R
when F(b) > R (see Exercise 13.10).

13.4.5 Reduction to the Decision Problem

A classical optimization problem can typically be phrased as follows: “find a feasible
solution that maximizes some objective function.” The decision problem version of this
is: “is there a feasible solution for which the objective function has value at least V?” A
standard reduction between the two involves solving the decision problem many times,
using binary search over values V. Unfortunately, such an approach will not work for
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mechanism design as it is not truthful to run several truthful mechanisms and then only
take the output of the one that is the most desirable.
The following truthful auction avoids this problem.

Definition 13.41 (RSPE) The Random Sampling Profit Extraction auction
(RSPE) works as follows:

(i) Randomly partition the bids b into two by flipping a fair coin for each bidder
and assigning her to b’ or b”.

(ii) Compute R’ = F(b’) and R” = F(b"), the optimal profits for each part.
(iii) Run ProfitExtractg on b” and ProfitExtractz» on b’.

The intuition for this auction is that ProfitExtracty allows us treat a set of bidders,
b, as one bidder with bid value F(b). Recall that a truthful auction must just offer a
price ¢; to bidder i who accepts if her value is at least ;. This is analogous to trying to
extract a profit R from bidders b and actually getting R in profit when F(b) > R. The
RSPE auction can then be viewed as randomly partitioning the bidders into two parts,
treating one partition of the bids b’ as a single bid with value R" = F®(b'), the other
partition b” as a single bid with value R” = F@(b"), and then running the Vickrey
auction on these two “bids.” This intuition is crucial for the proof that follows as it
implies that the profit of RSPE is the minimum of R’ and R”.

Theorem 13.42 The competitive ratio of RSPE is 4.

PROOF As we discussed above, the profit of RSPE is min(R’, R”). Thus, we
just need to analyze E[min(R’, R")].

Assume that 7®)(b) = kp has with k > 2 winners at price p. Of the k winners
in F@ | let k’ be the number of them that are in b’ and k” the number that are
in b”. Since there are k" bidders in b’ at price p, R’ > k’p. Likewise, R” > k" p.
Thus,

E[RSPE(b)]  E[min(R’, R")] - E[min(k'p, k"p)] _ E[min(k’, k")]
FOm) kp - kp N k
The last inequality follows from the fact that if k£ > 2 fair coins (correspond-
ing to placing the winning bidders into either b’ or b”) are flipped then
E[min{#heads, #tails}] > k/4.

It is evident that RSPE is no better than 4-competitive via an identical proof to

that of the analogous result for RSOP. O

Bl —

>

The currently best known competitive auction, which has a competitive ratio of 3.25,
is based on generalizing the idea of RSPE: First, the bids are randomly partitioned into
three parts, instead of two, with each part being treated as a single bid with value equal
to its optimal single price revenue. Then the optimal 3-bidder auction is run on these
three “bids.”

The random partitioning and profit extraction approach is fairly general. For it to
work successfully, it needs to be shown that a profit extractor for the benchmark exists,
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and that up to constant factors, the benchmark is preserved on a random sample of the
agents. Notice that the consistency issue discussed in earlier sections is not relevant if
only the agents in one partition win. This approach has been applied successfully to
several other settings.

13.4.6 Consensus Estimation and Truthfulness with High Probability

We now look at an alternative reduction to the decision problem and an approach to
competitive auctions that does not use random sampling. This approach leads to a
truthful digital goods auction that is 3.39-competitive with 7. However, rather than
presenting that result, we present a more general version of the approach with wider
applicability. To achieve this greater level of generality, we will need to relax our
solution concept and talk about truthfulness with high probability.

Definition 13.43 A randomized mechanism is truthful with high probability,
say 1 — e, if and only if for all i, v;, b;, and b_;, the probability that agent i
benefits by bidding nontruthfully is at most €, where the probability is taken
over the coin flips of the mechanism. In other words, for all i, v;, b;, and b_;,
Pr(u;(v;,b_;) > u;(b;,b_))] > 1 —€.

The techniques presented in this section, when applied to the digital goods auction,
result in a mechanism that is truthful with probability 1 — O(1/m) where m is the
number of winners in 7®), Thus, as the input instance grows and there are more winners,
the probability that nontruthful reporting by the agents is beneficial approaches zero.

Let us first describe the general idea. Consider attempting to design an auction to
compete with profit benchmark G. Suppose that there exists a profit extractor for G,
ProfitExtractg g, which obtains profit R from b if R < G(b). Then the mechanism we
would like to run is the following:

(i) Compute R = G(b).
(ii) Run ProfitExtractg z on b.

This fails of course because, generally, the R computed in Step (i) is a function of an
agent’s bid and therefore the agent could misreport their bid to obtain an R value that
results in a more favorable outcome for them in Step (ii).

On the other hand, it is often the case that a single agent only contributes a small
fraction to the profit G(b). In particular, suppose that there is some p such that for all
i,G(b_;) € [G(b)/p, G(b)]. In this case G(b_;) is a pretty good estimate of G(b). The
idea then is to replace Step (i) above with

(i)’ Compute R = r(G(b)).

where the probabilistic function 7(-) is a p-consensus B-estimate:

Definition 13.44 A (randomized) function r(-) is a p-consensus if forall V. > 0
with high probability all V' € [V /p, V] satisfy r(V') = r(V).
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Intuitively, if 7(-) is a p-consensus then with high probability r(G(b)) = r(G(b_;)) for
all i. This will imply that bidder i has very small probability of being able to influence
the value of r(G(b)) and thus we will be able to guarantee truthfulness with high
probability.

Definition 13.45 A (randomized) function r(-) is a B-estimate if for all V > 0
it satisfies (V) < V and E[r(V)] = V/B.

Intuitively, if r(-) is a B-estimate, then (G (b)) is close to, but less than, G(b). If this is
the case, then running ProfitExtractg g on b, with R = (G (b)), will extract a revenue
R which is close to G(b).

Of course, even in Step (i)’, R is a function of all the bids, so the resulting auction
is not truthful. However, under some mild assumptions2 it is possible to show that in
the case that r(G(b)) is a consensus no bidder has an incentive to deviate and misreport
their valuation. The resulting mechanism is truthful with high probability.

We now show how to construct the function r(-).

Definition 13.46 (r,) Given @ > 1, the randomized function r(-) picks U uni-
formly from [0, 1] and is

ro(V) = “V rounded down to the nearest o' ¥ for integer i.”
Straightforward probabilistic analysis can be used to prove the following lemmas.
Lemma 13.47 r, is a p-consensus with probability 1 — log,, p.

Lemma 13.48 r, is a B-estimate with B = ‘zlfnf‘

In the most general setting of single parameter agents, given the existence of a profit
extractor for a benchmark G, these lemmas can be combined with the consensus estimate
profit extraction auction (CEPE) described above, to give the following theorem (see
Exercise 13.11).

Theorem 13.49  Given a monotone profit benchmark G for a single-parameter
agent problem specified by cost function c(-) and a monotone profit extractor
ProfitExtractg g, CEPE is ";lff‘—compelitive and truthful with probability 1 —
log, p on inputs b satisfing G(b_;) € [G(b)/p, G(b)].

13.5 Frugality

‘We now turn to aradically different class of problems, in which the auctioneer is a buyer
intent on hiring a team of agents to perform a complex task. In this model, each agent i

2 What we need here is that the price offered to bidder i by ProfitExtractg g is monotone in R, that G(b) is
monotone in b, and that »(V') is monotone in V. See Exercise 13.11.
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can perform a simple task at some cost —v; known only to himself. Based on the agents’
bids b;, the auctioneer must select a feasible set — a set of agents whose combined
skills are sufficient to perform the complex task (x; = 1 if agent i is selected) —
and pay each selected agent some amount — p; (this is negative because we previously
defined p; as a transfer from the agent to the auctioneer). The setting is thus defined
by the set system of feasible sets (E, S), where E represents the set of agents and &
represents the collection of feasible subsets of E. In terms of our single parameter
framework, we have c(x) = 0 if {i | x;, = 1} € S, and oo otherwise. Several special
cases have received a great deal of attention.

Example 13.50 (path auctions) Here the agents own edges of a known directed
graph (i.e., E is the set of edges) and the auctioneer wishes to purchase a path
between two given nodes s and ¢ (i.e., S is the set of all s-¢ paths).

Example 13.51 (spanning tree auctions) Here the agents own edges of a
known connected, undirected graph, so again E is the set of edges, and the
auctioneer wishes to purchase a spanning tree.

Whereas when the auctioneer was a seller, our goal was to design a mechanism
to maximize his profit, here our goal is to design a mechanism to minimize the
payments the auctioneer makes, i.e., to hire the team of agents as cheaply as pos-
sible. Hence, analyzing the frugality of a mechanism — the amount by which it
overpays — becomes an important aspect of mechanism design, analogous to profit
maximization. We study frugality here using worst-case competitive analysis, as in
Section 13.4.

A first observation is that here, unlike the digital goods auctions we focused on in the
previous sections, the auctioneer is interested only in a single “object,” a feasible set.
Thus, at a very high level, these problems are closest in spirit to the single item auction
that we discussed in the context of profit maximization. For single-item auctions, in the
absence of any prior information about agent’s valuations, it is possible to show that
the Vickrey auction is optimal, and, of course, achieves a profit equal to the value of the
second highest bidder. Thus, a natural first mechanism to consider for hiring-a-team
auctions is the VCG mechanism.

Consider a path auction where the graph consists of n parallel edges from s to ¢.
This corresponds exactly to the case where the auctioneer is buying a single item,
and the Vickrey mechanism will result in a payment equal to the cost of the second
cheapest edge. Compare this to what happens in a graph consisting of two vertex
disjoint s-f paths P and P’, each with n edges. Suppose that each edge on path
P has cost zero, and each edge on path P’ has cost one, so that the total cost of
path P is zero and of path P’ is n. Then the VCG mechanism will purchase path
P, and each edge on that path will be paid n, for a total auctioneer payment of
n?. Thus, here the VCG mechanism pays much more than the cost of the second
cheapest path. Can we do better? How, in general, does the optimal truthful mecha-
nism (in terms of competitive ratio) depend on the combinatorial structure of the set
system?
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13.5.1 Competitive Framework

As with our worst-case bounds from the previous section, the first issue that must
be addressed to study frugality is the competitive framework and in particular the
benchmark for comparison, which in this case is a cost benchmark.

We would like the frugality ratio to capture the overpayment of a mechanism with
respect to a “natural” lower bound. One natural choice for this lower bound is the
minimum payment by a nontruthful mechanism, in which case, the frugality ratio
would characterize the cost of insisting on truthfulness.

Consider the mechanism N which, given the bids b, selects the cheapest feasible
set with respect to these bids, and pays each winning agent his bid (ties are broken in
favor of the efficient allocation). This mechanism is a pay-your-bid auction and is not
truthful. However, it does have at least one (full information) pure Nash equilibrium,
i.e., a bid vector b such that, for each agent i, given the bids b_; by all other agents,
i maximizes his profit by bidding b;. A Nash equilibrium can be considered a natural
outcome of the mechanism A/, and the resulting net payments are thus a good cost
benchmark. As we are interested in a lower bound, we define the cheapest Nash value
N (v) to be the minimum payments by A/ over all of its Nash equilibria.?

To illustrate this definition, consider the case of an s-¢ path auction in which there
are k parallel paths, as in our k = 2 path example above. Then, N (v) is precisely the
cost of the second-cheapest path — the agents on the cheapest path will raise their bids
until the sum of their bids equals the cost of the second-cheapest path, at which point
they can no longer raise their bids. None of the other edges have incentive to raise
their bids (as they are losing either way), nor to lower their bids, as they would incur a
negative profit. Thus, the metric in this case makes perfect sense — it is the cost of the
second cheapest solution disjoint from the actual cheapest.

With a cost benchmark in hand, we can now formalize a competitive framework for
these problems.

Definition 13.52 The frugality ratio of truthful mechanism M for buying a
feasible set in set system (E, F) is
up V)
¥ N
where M (v) denotes the total payments of M when the actual private values are

v, and N (V) is the cost benchmark, the cheapest Nash value with respect to the
true values v.

13.5.1.1 Bounds on the Frugality Ratio

The example we saw earlier shows that the VCG mechanism does not, in general, have
small frugality ratio. There is, however, one class of set systems for which VCG is

3 Here we consider only Nash egilibria where nonwinners bid their true value, and ties are broken according to
efficiency. We refer the reader to the relevant references for a justification of this restriction.
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known to have optimal frugality ratio equal to 1, and is given in the following theorem
(see Exercise 13.12).

Theorem 13.53 VCG has frugality ratio one if and only if the feasible sets of
the set system are the bases of a matroid.

On the other hand, for path auctions, say when there are two parallel paths, each
consisting of many agents, VCG can have frugality ratio €2(n). The following lower
bound shows that this bad case is not unique to the VCG mechanism.

Theorem 13.54 Consider the path auction problem on a graph G consisting
of two vertex disjoint s-t paths, P and P’, where |P| = n, (| P| is the number of
edges on the path P), and |P'| = n'. Then any truthful mechanism for buying a
path in this graph has frugality ratio at least Q(~/nn’).

PROOF Define v\¥*) to be the vector of private values for agents in P, in which
edge i on P has cost 1/4/n (so its value is v; = —1/4/n), and all the rest of the
edges in P have cost zero. Similarly, let v(*"/) be the vector of private values for
agents in P’ in which edge j on P has cost 1/+/n’ and all the rest of the edges
have cost zero. Let M be an arbitrary deterministic truthful path auction applied
to this graph. Define a bipartite graph G’ with a node for each edge in G and
directed edges defined as follows: there is an edge from node i (corresponding to
edge i in P) to node j (corresponding to edge j in P’) (respectively an edge from
j to i), if when running M on bid vector (v\"?, v(*.)) path P’ wins (resp. P
wins).

Since there are nn’ directed edges in this graph, there must be either a node
i in P with at least n’/2 outgoing edges or a node j in P’ with at least n/2
outgoing edges. In the former case, observe that, by the monotonicity of any
truthful mechanism, P’ must still win even if all edges in P’ bid 0, and the
payments to each of the relevant edges equal their threshold bid which is at least
1/+/n’. Thus the total payments are at least /n’ /2. Since in this case the cheapest
Nash equilibrium is 1/4/n, we obtain the desired lower bound. The analysis for
the second case proceeds mutatis mutandis. O

The previous lower bound can be generalized to randomized mechanisms. An im-
mediate corollary of this lower bound is that any truthful mechanism has frugality ratio
n on a graph consisting of two vertex disjoint paths of length n. Thus, for this graph,
VCG achieves the optimal frugality ratio.

On the other hand, if n’ = 1, the above lower bound on the frugality ratio of any
mechanism is /n. However, for the case of two parallel paths, one of length 1 and one
of length n, VCG has a frugality ratio of n — the worst case is when the long path wins.
This raises the question of whether or not there is a better truthful mechanism for this
graph.

The answer to this question is “yes.” The principle is fairly simple: if a large set
is chosen as the winner, each of its elements will have to be paid a certain amount
(depending on the other agent’s bids). Hence to avoid overpayment, a mechanism
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should — within reason — give preference to smaller sets. Thus, rather than choosing the
cheapest feasible set (i.e., the social welfare maximizing allocation), one could consider
weighting the cost of feasible sets by weights that capture the relative sizes of those
sets compared to other sets. To obtain a near-optimal mechanism for path auctions,
the precise magnitude of these weights should be chosen to balance the worst-case
frugality ratio over all potential combinations of winning sets.

To illustrate this, let us return to the graph consisting of two vertex disjoint paths.
We can balance the worst-case frugality ratio by choosing the path that minimizes
VIPc(P), where ¢(P) is the cost of the path P, i.e., c(P) = —)_,_p v;. Notice that
this mechanism uses a monotone allocation rule and hence is truthful. In this case, if
the two paths are P and P’, and, say P is chosen, the payments to each edge on P
will be upper bounded by %. This is because the threshold bid, and hence the
payment, to an edge e on P is the largest value they could bid and still win. Thus, the
total payments are

VIP'le(P) ;
P|l———— < /|P||P’|c(P).
|P| N [P|[P'|c(P)
Since c¢(P’) is a lower bound on the cheapest Nash of N, the ratio of payments to
cheapest Nash is upper bounded by +/[P||P’|. The same bound holds when P’ is
the selected path, resulting in a frugality ratio matching the lower bound to within a
constant factor.

These ideas can be generalized to get a mechanism whose frugality ratio is within a
constant factor of optimal, for any path auction problem, as well as some other classes
of “hiring-a-team” problems. For most set systems, however, the design of a truthful
mechanism with optimal or near-optimal frugality ratio is open.

13.6 Conclusions and Other Research Directions

In this chapter, we have surveyed the primary techniques currently available for design-
ing profit-maximizing (or cost-minimizing) auctions in single-parameter settings. Even
in the single-parameter setting, finding mechanisms with optimal competitive ratio (for
selling problems) or optimal frugality ratio (for buying problems) is challenging and
largely open. The situation is much worse once we get to multiparameter problems
such as various types of combinatorial auctions. In these settings, numerous new chal-
lenges arise. For example, we do not have a nice, clean, simple characterization of
truthfulness. Another issue is that it is completely unclear what profit benchmarks are
appropriate.

In the rest of this section, we briefly survey a number of other interesting research
directions.

Profit Benchmarks. In our discussions of competitive mechanisms, we saw that the
profit benchmark of a mechanism was a crucial component of the competitive approach
to optimal mechanism design. This raises a fundamental issue (that has yet to be
adequately resolved even in simple settings): what makes a profit benchmark the
“right” one?
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Pricing. In this chapter, we have discussed private-value mechanism design for profit
maximization. However, even the public value versions of some of these problems,
which are essentially algorithmic pricing problems, are open.

Consider, for example, the problem of pricing links in a network. We are given a
graph, and a set of consumer valuations. Each valuation is given as a triple (s;, #;, v;),
indicating that consumer i wishes to traverse a path from s; to #; and his value for
traversing this path (i.e., the maximum price he is willing to pay) is v;. With no
restriction on pricing, the profit-maximizing solution to the public value problem is
trivial: charge each consumer his value. However, such a pricing scheme is unreasonable
for many reasons, the foremost of which is that this pricing scheme is highly unfair —
different customers can get exactly the same product at different prices. An alternative
pricing question is the following: define a set of prices for the edges in the graph
(think of them as tolls) so as to maximize the total revenue collected. The model is
that, for each consumer i, the network will collect the cost of the cheapest path from
s; to t; with respect to the edge prices set, if that cost is at most v;. This is just one
example of an interesting algorithmic pricing problem that has recently received some
attention. The vast majority of interesting combinatorial pricing problems are not well
understood.

Derandomization. As we have seen, randomization is a very important tool in
the design of competitive auctions. For example, randomization was used in digi-
tal goods auctions to skirt around impossibility results for deterministic symmetric
auctions. Recently, however, deterministic constant competitive asymmetric digital
goods auctions have been discovered. It is an interesting direction for future research
to understand the general conditions under which one can derandomize competitive
auctions, or design deterministic auctions from scratch. Unfortunately, standard al-
gorithmic derandomization techniques do not work in truthful mechanism design
because running the mechanism with the many possible outcomes of a randomized
decision making procedure is no longer truthful. Thus, significant new ideas are
required.

Fairness. We have focused our attention here on a single goal: profit maximization.
In some situations, we desire that the mechanisms we design have other properties.
For example, the randomized digital goods auctions that we have seen are not terribly
fair — when we run, say, RSOP, some bidders pay a higher price than other bidders,
and some bidders lose even though their value is higher than the price paid by other
winning bidders. We say that outcomes of this type are not envy-free. (An auction is
envy-free if after the auction is run, no bidder would be happier with someone else’s
outcome.)

It turns out that it is not possible to design a truthful, constant-competitive digital
goods auction that is envy-free. Thus, alternative approaches have been explored for
getting around this impossibility, including relaxing the solution concept to truthfulness
with high probability, or allowing the mechanism to have a very small probability of
producing a non-envy-free outcome.

More generally, designing auctions that both achieve high profit and are, in some
sense, fair is a wide open direction for future research.
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Collusion. All of the results presented in this chapter assume no collusion between the
agents and indeed do not work properly in the presence of collusion. What can be done
in the presence of collusion? For example, for digital goods auctions, it has been shown
that it is not possible to design a truthful mechanism that is both profit-maximizing and
collusion-resistant. However, using the approach of consensus estimates, it is possible
to get around this impossibility with a mechanism that is truthful with high probability.

Bounded communication. How do we design revenue maximizing mechanisms when
the amount of communication between the agents and the auctioneer is severely re-
stricted? Bounded communication is particularly relevant in settings such as allocation
of low-level resources in computer systems, where the overhead of implementing an
auction will by necessity be severely restricted. Most of the work on this topic so far
has focused on the trade-off between communication and efficiency. These results, of
course, have implications for revenue maximization in a Bayesian setting due to the
reduction from revenue maximization to surplus maximization via virtual valuations.

Bundling. Another interesting direction is bundling. It has been proved that in several
settings, bundling items together may increase the revenue of the mechanism. However,
the limits of this approach are not understood.

Repeated and online Games. Profit maximization (or cost minimization) in mecha-
nism design arises in many settings, including resource allocation, routing and conges-
tion control, and electronic commerce. In virtually every important practical application
of mechanism design, the participants are dynamic. They arrive and depart over time,
with decisions being made on an ongoing basis. Moreover, in many important appli-
cations, the same “game” is played over and over again. Our understanding of online,
repeated games from the perspective of profit maximization is limited. For example,
sponsored search auctions, discussed in Chapter 28, lead to many interesting open
questions of this type.

Alternative solution concepts. Although truthfulness is not a goal in and of itself
when the goal is profit maximization, it is a strong and appealing concept: First, truthful
mechanisms obviate the need for agents to perform complex strategic calculations or
gather data about their competitors. Second, in some cases, especially single-parameter
problems, they simplify the design and analysis of protocols. Third, there is no loss of
generality in restricting ourselves to truthful mechanisms if our plan is to implement a
mechanism with dominant strategies (by the revelation principle). Fourth, in a number
of settings, the revenue extracted by the natural truthful mechanism is the same as that
extracted by natural nontruthful mechanisms (by the revenue equivalence theorem). A
related point is that there are often natural and appealing variants of truthful mechanisms
that achieve the same outcome (e.g., an English auction instead of a second-price
auction). Finally, and this is important, if we do not understand the incentive structure
of a problem in a truthful setting, we are going to be very hard-pressed to understand
it in any other setting.

Having said all that, truthful mechanism design also has a number of significant
drawbacks. For one thing, people often do not feel that it is safe to reveal their
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information to an auctioneer. An interesting alternative is to use an ascending auc-
tion, where published prices can only rise over time, or an iterative auction, where the
auction protocol repeatedly queries the different bidders, aiming to adaptively elicit
enough information about the bidders’ preferences to be able to find an optimal or
near-optimal outcome. What is the power of ascending and iterative auctions when the
auctioneer’s goal is profit maximization?

Truthfulness may also needlessly limit our ability to achieve our goals. This is mani-
fested in terms of extreme limitations on the mechanism, exceedingly high competitive
ratios, or simply impossibility. In the repeated game setting, these issues are much more
severe. Thus, one of the most important directions for future research is to consider
alternative solution concepts.

It has been shown that taking a small step away from truthfulness, e.g., to truth-
fulness with high probability, can enable us to overcome some impossibility results.
Other solution concepts that have received consideration in the literature include Nash
equilibria, correlated equilibria, and extensions of these. However, very little work
has been done concerning the design of profit-maximizing mechanisms using these
solution concepts.

In summary, major directions for future research are to figure out the correct solution
concepts for use in profit-maximizing auction design, and to develop techniques for
designing profit-maximizing mechanisms with respect to these concepts, especially
in online and repeated settings. The key desiderata of an equilibrium or solution
concept are that (a) there exist mechanisms that in this equilibrium achieve or at least
approximate our profit maximization goals (and whatever other goals we may have)
and (b) there are simple, rational, i.e., utility-maximizing, strategies for the players that
lead to outcomes in this equilibrium.*

13.7 Notes

Profit maximization in mechanism design has an extensive history beginning, pri-
marily, with the seminal paper of Myerson (1981) and similar results by Riley and
Samuelson (1981). These papers study Bayesian optimal mechanism design in the less
restrictive setting of Bayes-Nash equilibrium. However, Myerson’s optimal mechanism
is precisely the optimal truthful mechanism we present here. This material is by now
standard and can be found in basic texts on auction theory (Krishna, 2002; Klemperer,
1999).

The material on approximately optimal mechanism design, including the empir-
ical Myerson mechanism and the random sampling optimal price auction comes
from Baliga and Vohra (2003), Segal (2003), and Goldberg et al. (2006). Precise anal-
ysis of convergence rates for unlimited supply auction settings is given in Balcan et al.
(2005).

The worst-case competitive approach to profit maximization, the proof that no sym-
metric, deterministic auction is competitive and the RSOP auction were first introduced
in Goldberg et al. (1999), Goldberg et al. (2001), and Goldberg et al. (2006). The proof

4 Alternatively, we can ask that there are simple and reasonable behaviors that the players can follow that lead to
outcomes in equilibrium and that the complexity of figuring out how to deviate advantageously is excessive.
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of Theorem 13.36 can be found in Feige et al. (2005). The lower bound on the compet-
itive ratio for digital goods auctions is taken from Goldberg et al. (2004). The notion of
profit extraction, truthful mechanisms for reducing profit maximization to profit extrac-
tion, and the RSPE auction come from Fiat et al. (2002), Deshmukh et al. (2002), and
Goldberg and Hartline (2003). The material on cost sharing that is the basis for many
of the known profit extractors can be found in Moulin and Shenker (2001). The idea of
consensus estimation and truthfulness with high probability come from Goldberg and
Hartline (2003), Goldberg and Hartline (2003). Refinements and extensions of these
results can be found in Goldberg and Hartline (2005) and Deshmukh et al. (2002).
The material on frugality and path auctions is drawn from Archer and Tardos (2002),
Elkind et al. (2004), and Karlin et al. (2005).

This survey focused primarily on auctions for digital goods. Further results on
profit maximization (and cost minimization) in these and other settings can be found
in Goldberg and Hartline (2001), Deshmukh et al. (2002), Fiat et al. (2002), Talwar
(2003), Garg et al. (2002), Czumaj and Ronen (2004), Ronen and Tallisman (2005),
Balcan et al. (2005), Borgs et al. (2005), Hartline and McGrew (2005), Immorlica et al.
(2005), Aggarwal and Hartline (2006), and Abrams (2006).

The research issues surveyed in the conclusions of this chapter are explored in
a number of papers. Profit benchmarks are discussed in Goldberg et al. (2006),
Deshmukh et al. (2002), Hartline and McGrew (2005), and Karlin et al. (2005); al-
gorithmic pricing problems in Guruswami et al. (2005), Hartline and Koltrun (2005),
Demaine et al. (2006), Briest and Krysta (2006), Balcan and Blum (2006), and Glynn
et al. (2006); derandomization of digital goods auctions via asymmetry in Aggarwal
et al. (2005); fairness in Goldberg and Hartline (2003a); collusion in Schummer (1980)
and Goldberg and Hartline (2005); bounded communication in Blumrosen and Nisan
(2002) and Blumrosen et al. (in press); and bundling in Palfrey (1983) and Jehiel
et al. (in press). Studies of profit maximization in online auctions can be found in
Bar-Yossef et al. (2002), Lavi and Nisan (2000), Blum et al. (2004), Kleinberg and
Leighton (2003), Hajiaghayi et al. (2004), and Blum and Hartline (2005). Truthfulness
with high probability was studied in Archer et al. (2003) and Goldberg and Hartline
(2003a, 2005). Alternative solution concepts are explored in Osborne and Rubinstein
(1994), Lavi and Nisan (2005), and Immorlica et al. (2005), among others.
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Exercises

13.1  What is the optimal Bayesian single-item auction when the seller values the item
at vp > 0 and bidder valuations are i.i.d?

13.2  What is the optimal Bayesian auction for a seller with k identical items and n > k
bidders with i.i.d. valuations drawn uniformly from [0, 1]?

13.3 Consider a discrete setting where bidder i’s probability of having valuation v;; is
fij. Derive the virtual valuations in this setting.

13.4 Show that the empirical Myerson mechanism, EM, applied to a single-item auc-
tion problem is identically the Vickrey auction.
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13.5 The McDiarmid inequality is the following. Let
Y1, ..., Yn be independent random variables taking on values from a set A and
t: A” > R a function satisfying

sup  [tly) = t(y,,y-)l < G

yeA™ €A
for all i. Then for all y > 0 we have:
Pr{It(Yr, ... Vo) — E[t(Y1, ... Vo)l | = y] < 26277/ 29,

Prove Lemma 13.29 using the McDiarmid inequality.

13.6 Given a set of prices Q and bids b we say @' C Q is a y-cover of Q on b if for all
q € Q there exists ¢’ in Q' such that

" lgth) — by = v OPTo(b).

(@) Prove that if Q" is a y-cover of Q and all ¢’ € Q' are e-good then all g € Q are
(e + y)-good.

(b) Show that RSOPg on input b such that Q' is a §-cover of Q is a (1 —€ — y)-
approximation with probability (1 — §) when OPTg(b) > f—ﬁ’ In(%).

(c) For any b with b; € [1, h], find a y-cover of Q@ = R of size O(% loglog hn).

13.7 Give a deterministic asymmetric auction that is a 2-approximation to the optimal
single price sale, OPT; p(b), when b satisfies b; € {1, h} for all i and at least two
bids have value h.

13.8 Prove that no truthful digital goods auction with 2 bidders is best. In other words,
show that for any truthful auction A4, there is another auction .4’ and an input v
such that the profit of A’ on input v is higher than that of A.

13.9 Show how to use a B-competitive digital goods auction (against benchmark
F2(v)) to obtain a f-competitive auction for the limited supply setting where only
k identical units are available for sale (use benchmark F2%(v) = maxy<;<x i vg)).

13.10 Prove the correctness of ProfitExtractg (Definition 13.40): prove that it is truthful
and that it always obtains a profit of R when F(b) > R.

13.11 Given a monotone profit benchmark, G; a profit extractor ProfitExtractg ¢ for G
that is monotone in R; and a monotone function r(V); consider the mechanism
that (a) computes R = r(G(b)), and (b) runs ProfitExtractg g(b).

(@) Prove that if r(G(v_;)) = r(G(v)) for particular bidder valuations v that bidding
b; = v; is an ex-post-equilibrium, i.e., if b_; = v_;, then an optimal response
for bidder i is to bid b; = v;.

(b) Prove Theorem 13.49.

13.12  Prove that the VCG mechanism has frugality ratio one for spanning tree auctions.



